Mechanisms of Cough

James N. Baraniuk, MD Georgetown University Washington DC USA baraniuj@georgetown.edu

Which cough?

Widdicombe J, Fontana G. Cough: what's in a name? Eur Respir J. 2006 Jul;28(1):10-5.

	Cough Reflex	Expiratory Reflex
Initiation	Irritation of the larynx, trachea or	Mechanical or chemical irritation of
	bronchi (esophagus?)	the vocal cords (and/or trachea)
Brainstem	Processing through "cough center"	Rapidly acting involuntary
	with potential for cortical "override"	"subcortical" defensive reflex
	to stop a cough	
Inhalation:	Strong inspiratory effort using	No inspiration
Inspiratory	diaphragm, intercostal, abdominal	
Phase	and accessory muscles to total lung	
	capacity (TLC)	
Glottis	Closure at TLC	Immediate closure to prevent entry of
		laryngeal material into the
		tracheobronchial tree
Exhalation:	Forced effort-dependent and effort-	Weaker force generation and
Compressive	independent (elastic recoil)	intrathoracic pressure against glottis
Phase	exhalation from TLC against a closed	by compression of air already in the
	glottis increases intrathoracic	lungs (muscular and elastic recoil)
	pressure	
Opening of	High air flow rate (air velocity, force)	Variable, modest airflow rate that
glottis:		depends on the initial degree of lung
Expulsive		inflation
Phase		
Sound	Initial loud, "hard" BANG (10-20	Initial BANG (10-20 msec) of glottic
	msec) due to glottic closure followed	closure only. Quieter than cough
	by longer (200 msec), "soft"	
	harmonic "huff" during exhalation	
	with high flow rates and higher	
	intrathoracic pressures	

Modulation of Cough Mechanisms

	Cough Reflex	Expiratory Reflex
Perception	Sensation of "urge to cough",	No sensation described
	therefore activation to thalamic	
	and cortical (insula?) levels	
Neonates	Develops after birth as lung	Present at birth; appears first
	volume increases	More important in Darwinian terms?
Hering-Breuer	Inconsistent effects	Hering-Breuer inhalation reflex strongly
reflex		augments the expiratory reflex
		(paradoxical)
High PaCO2	Depress cough reflex	No effect
Slow wave	Depress cough reflex	Lesser effect

sleep		
Anaesthesia	Inconsistent effects	Decreases expiratory reflex
Consciousness	Voluntarily reproducible to	Not consciously reproducible
	maximum explosive effect	
Opiates	Inhibit cough	No effect

Patterns of Coughs

1. The single "textbook" cough"

Irritation \rightarrow

- → Brainstem reflex with cortical analysis
- → Inhalation
- → Glottic closure with loud sound (~10 msec) and strong muscular response to generate an high intrathoracic pressure ("compressive phase")
- → Opening the glottis leads to maximum change in air flow and pressure and the prolonged (~200 msec) expiratory "huff"

2. Cough epoch, attack, paroxysm

Repeated inhalation and exhalation phases with glottic closures

3. Initial Expiration Reflex

Irritation \rightarrow

- → Brainstem
- → Rapid onset of reflex
- → Glottic closure (prevents inhalation) (loud bang)
- → Compressive phase by muscular contraction against a closed glottis
- → Exhalation
- → May be followed by another expiration reflex without inhalation
- → Multiple expiration reflexes invariably must be followed by inhalation and potentially initiation of the cough reflex

Laryngeal Reponses to Chemical Stimuli

Low dose → glottic closure with respiratory muscle activation

Moderate dose → cough reflex (inhalation)

High dose → expiratory reflex with glottic closure and exhalation ("laryngeal cough") Expiratory reflex is vital to prevent aspiration in stroke, Parkinsonism, and other at risk diseases

GORD / GERD

- <u>A.</u> Oesophageal sensory receptors respond to acid, pepsin, or volume expansion of the lower oesophagus
- $\underline{\mathbf{B.}}$ Upper oesophageal sphincter laxity while upright with acid or gastric content entry into the supraglottic / piriform sinus region
 - **C.** Cough or expiration reflex(es)?

Post-Nasal Drip Syndrome: "Throat Clearing Cough"

Cough vs. Expiratory reflex activation?

Stimuli may include mucus (mechanical "bungee cord" effect), inflammatory mediators in mucus, laryngeal irritation, sensitization of the cough (expiratory?) reflex by tracheobronchial inflammation (e.g. asthma, bronchitis)